

Chemical Data Assimilation Methodology:

Sequential Sub-optimal Kalman filter

$$\hat{\mathbf{x}}_k^a = \mathbf{x}_k^f + \mathbf{K}_k [\mathbf{y}^{\text{obs}} - \mathbf{H}_k \mathbf{x}_k^f]$$

Kalman Gain Matrix: $\mathbf{K}_k = (\mathbf{H}_k \mathbf{P}_k^f \mathbf{H}_k^{\mathrm{T}} + \mathbf{R}_k)^{-1} \mathbf{P}_k^f \mathbf{H}_k^{\mathrm{T}}$

Analysis Error Cov. Matrix: $P_k^a = (I - K_k H_k) P_k^f$

- Observation operator (H) accounts for TES averaging kernels and a priori profiles
- Analysis error variance transported as a passive tracer

Models and Data Streams

- GEOS-Chem with full nonlinear tropospheric chemistry
- •O₃ and CO profile retrievals from TES for July 1 through latitude x 5° longitude, 55 vertical August 31 2006
- 6-hour analysis cycle
- Assumed forecast error of 20% for CO and 50% for O₃
- Neglected horizontal correlations in forecast and observation error covariance matrices
- Results presented for 15 August 2006

GEOS-Chem

- Chemical transport model
- 2.0° latitude x 2.5° longitude or 4° levels (top level approx. 0.01 hPa)
- Model transport driven by GEOS-4 **GMAO** analyses
- Linoz parameterization of stratospheric ozone vertical distribution

Impact of long range transport on surface air quality in the US: Recent insights from satellite assimilation

G.B. Osterman¹ for K.W. Bowman¹, M. Parrington², D.B.A Jones² ¹Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA ²Department of Physics, University of Toronto, Toronto, Ontario

Results

Future Work The TES team at JPL is vorking with collaborators at Virginia Tech University to develop 3D- and 4D-Var ssimilation of TES data nto GEOS-Chem

Conclusions

- Spatiotemporal sampling of TES is sufficient to constrain tropospheric ozone distribution in the model
- Assimilation reduces the negative bias in free troposphere, enhancing the flux into the boundary layer.
- Surface ozone increased by ~9 ppb over Western North America and by ~2 ppb over the Southeastern US
- Estimated total background ozone of 20-40 ppb
- Comparisons of model to surface sites were improved in the Western US, wore in the Eastern US after assimilation